5 FLAC3D 建模方法

利用 FLAC3D 进行数值分析的第一步便是如何将物理系统转化为由实体单元和结构单 元所组合的网格模型(Modeling),该模型与分析对象的几何外形特征相一致。目前,FLAC3D 网格模型的建立方法可分为两种,即直接法及间接法,直接法是按照分析对象的几何形状利 用 FLAC3D 内置的网格生成器建模,网格和几何模型同时生成,该方法较适用于简单几何外 形的物理系统;与之不同,间接法则适用于复杂的、单元数目较多的物理系统,该方法建立 网格模型时,像一般计算机绘图软件一样,通过点、线、面、体,先建立对象的几何外形, 再进行实体模型的分网(Meshing),以完成网格模型的建立,FLAC3D 自身不具备间接法建 模功能,读者可借助第三方软件与 FLAC3D 的接入轻松实现。本章主要介绍 FLAC3D 的网 格建模方法,包括利用网格生成器建立简单网格、利用第三方软件进行模型导入以及复杂模 型的方法。

本章要点:

- FLAC3D 网格单元的基本类型
- 网格的连接
- FLAC3D 网格的数据格式
- 常用有限元模型与 FLAC3D 的接入
- 复杂模型的建立

5.1 简单网格的建立

5.1.1 基本网格的形状

FLAC3D 内置网格生成器中的基本形状网格有 13 种,通过匹配、连接这些基本形状网格单元, 能够生成一些较为复杂的三维结构网格。网格单元的基本类型和特征如表 5-1 所示,基本可以归为 四大类,即六面块体网格、退化网格、放射网格和交叉网格。

FLAC3D 建模方法 第 5 章

形状	形状 名称		控制点 个数	单元划分 的方向 个数	内部区域单 元划分的方 向个数	能否 填充	适用范围
	六面块体网格	brick	8	3	0	不能	使用最广泛的网 格形状
	退化块体网格	dbrick	7	3	0	不能	不常用
	楔形体网格	wedge	6	3	0	不能	用于存在坡面的 模型的建立
	均匀楔形体网 格	uwedge	6	3	0	不能	用于存在坡面的 模型的建立
	棱锥体网格	pyramid	5	3	0	不能	不常用
	四面体网格	tetrahedron	4	3	0	不能	不常用
	柱体网格	cylinder	6	3	0	不能	用于圆柱体模型 的建立,如桩、三 轴试验的模型
	块体外围渐变 放射网格	radbrick	15	4	3		用于洞室模型的 建立
	六面体隧道外围 渐变放射网格	radtunnel	14	4	4	能	用于隧道模型的 建立
	柱 形隧道外围 渐变放射网格	radcylinder	12	4	4	能	用于隧道模型的 建立
	柱形壳体网格	cshell	10	4	4	能	用于隧道模型的 建立
	柱形交叉隧道 网格	cylint	14	5	7	能	用于交叉隧道模 型的建立
	六面体交叉隧 道网格	tunint	17	5	7	能	用于交叉隧道模 型的建立

表 5-1 FLAC3D 基本形状网格的基本特征

5.1.2 单元网格的生成

生成块体网格(Brick)的命令格式如下:

generate zone brick p0 x0 y0 z0 p1 x1 y1 z1 p7 x7 y7 z7 size n1 n2 n3 ratio r1 r2 r3

或者

generate zone brick p0 x0 y0 z0 p1 add x1 y1 z1 p7 add x7 y7 z7 size n1 n2 n3 ratio r1 r2 r3

在该命令中,generate为"生成网格"之意,可以缩写为gen,zone表示该命令文件生成的是 实体单元,brick关键词表明建立的网格采用的是brick基本形状,p0,p1……p7 是块体单元的 8 个控制点,其后跟这些点的三维坐标值(xn,yn,zn),含义是由 8 个点可确定一个六面体网格。不 过,p0~p7 各点的定义需遵从"右手法则",不能随意颠倒顺序。如果采用全局坐标系,三维坐标 值应为建模空间内的全局三维坐标值;若采用局部坐标系,则除 p0 点采用全局三维坐标值外,其 他点的坐标值都必须取其相对于点 p0 的三维坐标值,且在点编号后加关键词 add (见本节第 2 行 命令)。size 为定义坐标轴(x,y,z)方向网格单元数目的关键词,其后跟划分的单元数目(n1, n2,n3); ratio 为定义相邻单元尺寸大小比率的关键词,其后跟坐标轴方向相邻网格单元的比率(r1, r2,r3)。

如果生成的是长方体网格,前述命令可以简化为:

generate zone brick p0 x0 y0 z0 p1 x1 y1 z1 p2 x2 y2 z2 p3 x3 y3 z3 size n1 n2 n3 ratio r1 r2 r3

generate zone brick p0 x0 y0 z0 p1 add x1 y1 z1 p2 add x2 y2 z2 p3 add x3 y3 z3 & size n1 n2 n3 ratio r1 r2 r3 即只需采用 4 个控制点即可确定该长方体。

此外,当网格的几何形状为立方体时,上述命令文件可以用下列命令替代,进一步简化,关键词 edge 后跟的 evalue 是立方体的边长。

generate zone brick p0 x0 y0 z0 edge evalue size n1 n2 n3 ratio r1 r2 r3

除块体网格外,楔形体网格、棱锥体网格和四面体网格可视为块体网格的变种,统称它们为退 化网格,用法与 Brick 的用法相类似。此外,FLAC3D 中为用户提供了一种放射状网格,该类由于 基本形状网格区域的内外边长(或对边)大小不等,从而造成剖分后的网格单元呈放射状扩散。这 类网格在一些特殊几何形状网格模型(如隧道、硐室模型)的建立过程中经常用到,用法如下:

generate zone radcylinder p0 x0 y0 z0 p1 x1 y1 z1 p2 x2 y2 z2 …… p11 x11 y11 z11 &

dimension d1 d2 d3 d4 size n1 n2 n3 n4 ratio r1 r2 r3 r4 fill group groupname

命令中,关键词 dimension 后跟确定内部区域的边长(或半径)值;关键词 fill 表示对内部区 域进行填充,其后如跟关键词 group,则表明对填充区域进行了有别于外围材料的命名,组名为 groupname。组名可随意更改,只要它不与 FLAC3D 中的命令、关键词和内置变量名冲突即可。

交叉网格是 FLAC3D 中最复杂的基本形状网格,需用的控制点数目最多达 16 个。这类网格主要包括柱形交叉隧道网格和六面体交叉隧道网格,通常用于存在相互交叉的隧道和巷道网格的建立。交叉网格的生成命令文件与前述的柱形隧道外围渐变放射网格极为类似,这里不再赘述。 图 5-1 列出了每种网格的详细图解。

FLAC3D 建模方法 第5章

(m) 平行六面体交叉隧道网格 tunint

图 5-1 13 种网格建模基本特性(续图)

表 5-2 列出的是生成基本形状的网格时常用的关键词。

表 5-2 使用 generate zone 生成基本形状网格的常用关键词

关键词	用途	关键词	用途
add	用于以 p0 为原点的局部坐标系建模	group	定义某一范围内的网格组名
dimension	定义内部区域的尺寸	p0~p16	建立各种形状网格的控制点
edge	定义网格边长	ratio	定义相邻网格单元的尺寸大小比率
fill	定义网格内部填充区域	size	定义网格在各坐标方向上的单元数目
сору	复制网格	reflect	镜像网格(dd、dip 或 normal、origin)

其中 dimension 是定义 radtun、rancyl、radbr、cshell、cylint、tunint 基本形状网格内部区域尺 寸的关键词,但要注意并不是所有的基本网格都需要用到 dimension。

fill 关键词是填充 radtun、rancyl、radbr、cshell、cylint、tunint 内部区域的,如果没有用,则 内部区域不包括单元。

ratio 如果未给定,默认值为1。size 如果未给定,默认值为10。

gen zone reflect 网格生成命令中要用到 dd、dip 或 normal、origin 这些指定面的关键词。后边 一节要重点介绍这个命令的应用。

5.1.3 网格的连接

建立复杂几何形状的网格时,单一采用某一基本形状网格有时候难以达到目的,这时就要对基本网格进行匹配、连接,才能得到与分析对象相符的网格形状。使用 generate zone 生成网格时,系统会自动检测连接处的节点,如果已有节点和将要生成的节点的坐标值不超过 1×10⁻⁷时,系统默认

它们为相同的点,生成新网格时,在连接处直接使用基本网格节点,不再生成新的节点。如果已有 节点和将要生成的节点的坐标值差别较大,超过 1×10⁻⁷时,可借助命令 attach 和 generate merge 来 实现基本形状网格的连接。

命令 attach 可以用来连接单元大小不同的基本网格,但对各网格连接面上的单元尺寸有限制, 要求它们之间的比率成整数倍,以使得不影响计算结果的精确性。建议正式计算前,先将模型在弹 性条件下试运行以检测比率是否合适。如果在连接的网格节点上的位移或应力分布不连续,那么应 调整连接面上单元尺寸的比率;如果不连续范围是微小的,或者远远小于计算模型的大小,那么这 对计算结果的影响有限,可不进行调整。使用命令 attach 连接网格的常用形式如下:

attach face range <·····>

命令中 range 后跟定义范围的关键词,用来确定连接面的范围。需注意的是,命令 attach 有一定的适用范围,采用它连接后的网格的信息不能为镜像(命令 generate reflect)操作所复制。

attach face 命令常用来检查网格模型建立的正确性。如果模型中没有设置接触面,也没有 设置特定的单元不连续的情况,直接运行 attach face 命令可以输出网格中被连接的节点个 数,若输出个数为0,则模型基本上不存在单元不连续的情况;若输出被连接的节点个数 不为0,则要特别注意,很可能建模过程中存在一些错误,比如相邻基本形状的网格个数 不匹配等,需要读者仔细检查。

```
下面用一个例子来说明 attach 的用法, 连接不同单元大小的命令如下:
gen zone brick size 4 4 4 p0 0,0,0 p1 4,0,0 p2 0,4,0 p3 0,0,2
gen zone brick size 8 8 4 p0 0,0,2 p1 4,0,2 p2 0,4,2 p3 0,0,4
attach face range z 1.9 2.1
model elas
prop bulk 8e9 shear 5e9
fix z range z -.1 .1
fix x range x -.1 .1
fix x range x 3.9 4.1
fix y range y -.1 .1
fix y range y 3.9 4.1
apply szz -1e6 range z 3.9 4.1 x 0,2 y 0,2
hist unbal
solve
save att.sav
建立连续单元网格的命令如下:
gen zone brick size 8 8 8 p0 0,0,0 p1 4,0,0 p2 0,4,0 p3 0,0,4
model elas
prop bulk 8e9 shear 5e9
fix z range z -.1 .1
fix x range x -.1 .1
fix x range x 3.9 4.1
fix y range y -.1 .1
```

5 Chapter

114

fix y range y 3.9 4.1

FLAC3D 建模方法 第 5 章

5 Chapter

115

apply szz -1e6 range z 3.9 4.1 x 0,2 y 0,2 hist unbal solve save noatt.sav

1000

两种情况下的模拟结果如图 5-2 和图 5-3 所示。由两个图可见, z 方向的位移云图分布基本一 致,证明 attach 关键词连接不同单元网格是正确的。

图 5-2 用 attach 关键词连接不同单元网格位移云图

图 5-3 连续网格的位移云图

命令 generate merge 也可以用来连接相邻的基本网格。与 attach 不同的是, generate merge 是合并某一容差范围内的节点,即相邻点间的距离小于设定的容差,它们就会合并成一个点。使用 generate zone 生成基本网格后,输入如下命令:

generate merge vtol

即可实现基本网格间的连接, vtol 为容差, 用户可以根据分析需要自行设定。

gen merge 命令也可以用来检查网格模型的正确性。设置一个较小的容差,查看命令的运行结果,如果存在被合并的节点,则说明模型中某些节点的位置很接近,建模时设置的节点坐标可能存在错误,这种情况常常出现在将其他软件生成的网格文件导入到 FLAC3D 后形成的网格模型中,由于不同的软件输出的网格信息的精度不同,在导入过程中某些节点的位置坐标有所偏差,从而在 FLAC3D 读入时造成网格错误。因此,使用 其他软件生成的网格模型必须要采用 gen merge 命令来检查其正确性。

5.1.4 简单网格模型的建立

先建立一个简单的柱形隧道外围渐变放射网格,命令如下: gen zone radcyl size 5 10 6 12 fill 显示结果如图 5-4 所示,内部网格已经被填充。

图 5-4 填充后的柱状放射性网格

加上 ratio 后, 命令如下, 以 1.2 的比率向外扩展, 显示结果如图 5-5 所示。

gen zone radcyl size 5 10 6 12 ratio 1 1 1 1.2

下面建立一个巷道模型,尺寸为100×200×100,用到 radcyl 和 radtun 基本模型,命令如下,模型显示如图 5-6 所示。

116

gen zone radcyl size 5 10 6 12 rat 1 1 1 1.2 p0 0,0,0 p1 100,0,0 p2 0,200,0 p3 0,0,100 gen zone radtun size 5 10 5 12 rat 1 1 1 1.2 p0 0,0,0 p1 0,0,-100 p2 0,200,0 p3 100,0,0

1000

图 5-5 柱形隧道外围渐变放射网格的建立

图 5-6 用 radcyl 和 radtun 建立巷道模型

然后采用镜像关键词 reflect, 生成完整的网格, 命令如下, 显示图形如图 5-7 所示。 gen zone reflect dip 90 dd 270 origin 0,0,0

1000

图 5-7 用 reflect 关键词生成巷道完整网格

5.2 其他网格模型的导人

FLAC3D 内置的网格生成器使网格和几何模型同时生成,这不利于复杂形状网格单元的连接、 匹配和修改,一定程度上制约了其在复杂网格模型分析中的应用。很多读者基于 FLAC3D 网格的 数据格式自行编制了其他网格,如 ANSYS、ABAQUS、ANSA、HyperMesh 等导入到 FLAC3D 的 接口程序,大大提升了 FLAC3D 的前处理功能。本节主要介绍两种常用有限元软件 ANSYS、 ABAQUS 与 FLAC3D 的模型接入。

5.2.1 FLAC3D 网格的数据格式

要实现其他软件网格模型的导入,必须了解 FLAC3D 网格的数据格式。与大多数有限元软件 相类似,FLAC3D 遵循点(GRIDPOINT)、单元(ZONE)、组(GROUP)的网格数据格式,实体 模型完成后,网格点坐标信息、单元信息和模型分组信息以文件形式通过 impgrid 和 expgrid 命令[®] 自由导入和输出;文件类型为".flac3d",读者可以使用记事本、UltraEdit 等文本编辑工具打开。 这里以一个简单网格模型为例(例 5.1)来说明其 FLAC3D 网格的数据形式。

```
例 5.1 一个简单的网格模型。
```

 n
 ;开始一个新的分析

 gen zone brick &
 p0000p1100p2010p3 001size111group1 ;定义网格点生成块形单元,隶属于组1

 gen zone brick &

[®] 自 FLAC3D V2.1 238 以后的版本才有网格数据导入、导出命令 impgrid 和 expgrid。

118

	FLAC3D 建模方法 男 5 早
p0 1 0 0 p1 2 0 0 p2 1 1 0 p3 1 0 1 size 1 1 1 group 2 expgrid 51.flac3d	;定义网格点生成块形单元,隶属于组2 ;输出网格模型数据
运行上述命令后,程序会在命令所在文件夹内生成	51.flac3d 文件,即 FLAC3D 的网格数据,
内容如下。	
* FLAC3D grid produced by FLAC3D * GRIDPOINTS	
G 1 0.00000000e+000 0.00000000e+000 0.00000000e+0	000
G 2 1.00000000e+000 0.00000000e+000 0.00000000e+0	000
G 3 0.00000000e+000 1.00000000e+000 0.00000000e+0	000
G 4 0.00000000e+000 0.00000000e+000 1.00000000e+0	000
G 5 1.00000000e+000 1.00000000e+000 0.00000000e+0	000
G 6 0.00000000e+000 1.00000000e+000 1.00000000e+0	000
G 7 1.00000000e+000 0.00000000e+000 1.00000000e+0	000
G 8 1.00000000e+000 1.00000000e+000 1.00000000e+0	000
G 9 2.00000000e+000 0.00000000e+000 0.00000000e+0	000
G 10 2.00000000e+000 1.00000000e+000 0.00000000e+	-000
G 11 2.00000000e+000 0.00000000e+000 1.00000000e+	000
G 12 2.00000000e+000 1.00000000e+000 1.00000000e+	-000
* ZONES	
Z B8 1 1 2 3 4 5 6 7 8	
Z B8 2 2 9 5 7 10 8 11 12	
* GROUPS	
ZGROUP 1 1	
ZGROUP 2	
2	
第一部分为网格点信息,格式为: 网格点(Gridpoi	int)、网格点序号、网格点坐标(x,y,z);

第二部分为单元信息,格式为:单元(Zone)、单元类型(Brick)、单元序号、组成单元的网格点 拓扑信息(Brick单元由8个网格点组成);第三部分为模型分组信息,格式为:组(ZGROUP)、 组序号、组所包含的单元序号。本例中B8为8个网格点的Brick单元,除此之外,FLAC3D中常 用的基本单元还有W6-wedge单元,P5-pyramid单元,T4-tetrahedral单元;组成基本单元的各 网格点在全局坐标系下按照特定顺序进行编号,即单元的拓扑信息。例5.1中所定义的网格模型如 图5-8所示,读者可以检查Brick单元中网格点的拓扑关系,不难发现全局坐标系下8个网格点的 排布顺序与5.1节一致。

将其他软件的网格模型导入 FLAC3D 时,只需将这些软件输出的网格模型信息按照 FLAC3D 的网格模型信息进行改造,就可得到符合 FLAC3D 网格数据形式的模型文件。

5.2.2 ANSYS 网格模型的导入

ANSYS 软件是美国 ANSYS 公司开发的大型通用有限元软件。近 40 年来 ANSYS 公司一直致 力于 CAE 技术的研究和发展, ANSYS 所具有的灵活、开放的解决方案,为概念设计到最终测试 的设计全过程提供了全程 CAE 的协同环境,可以使工程师们在设计的各个阶段使用 CAE 技术,缩 短研发流程、降低研发费用、提高设计质量。无论在国内还是国外, ANSYS 都是使用最为频繁、 5 Chapte

1.0040

应用范围最广的 CAE 软件之一,且由于 ANSYS 的应用较为成熟,很多专业绘图软件如 Pro/E、UG、CATIA 以及 AutoCAD 等都提供与 ANSYS 的对接,为用户建模提供了无限的选择空间。ANSYS 功能完备的前后处理器、强大的图形处理能力和得心应手的实用工具较好地弥补了 FLAC3D 在前处理方面的不足,通过 ANSYS 模型的导入,读者可以很容易地实现复杂岩土问题的建模,大大缩短采用 FLAC3D 进行数值问题分析的时间。本节向读者演示 AutoCAD 二维图形导入 ANSYS,然后在 ANSYS 中进行分网,最后将采集到的网格点和单元信息导入 FLAC3D 的过程。

图 5-8 FLAC3D 单元网格点拓扑关系

1. AutoCAD 图形与 ANSYS 的接入

将 AutoCAD 中的二维图形以".sat"文件格式输出,可直接导入 ANSYS 中去。本节以简单准 三维边坡模型为例,分述 AutoCAD 中二维图形导入 ANSYS 中成模、分网、信息输出以及接入 FLAC3D 的方法。

(1) 建立几何模型。

图 5-9 为 AutoCAD 中二维边坡图形,模型由边坡和基岩两种材料组成,基岩厚度为 5m,边坡高 25m,底部计算边界长 60m,坡顶宽 15m。

在工具栏中单击 ☑, 然后选择图形边界, 生成面域。在 AutoCAD 主菜单中执行以下路径: 主菜单>输出>其他格式>输入文件名.sat, 选择所生成的两个面域后, 即可将图 5-9 以".sat"文件 的格式输出。

打开 ANSYS, 主界面如图 5-10 所示。执行路径:

File> Import> SAT..

执行完毕后,二维图形便可导入 ANSYS 中,显示如图 5-11 所示。

接下来基于平面模型在 ANSYS 中采用拉伸(Extrude)的方法构筑厚度为 5m 的准三维模型,操作如下:

路径 1: Main Menu> Proprocessor> Modeling> Operate> Extrude> Areas> Along Normal

执行路径 1,选取两个 Area (面域)中的任一个,在弹出的 Extrude Area by...对话框中 (图 5-12 (a))单击 Apply,弹出图 5-12 (b)所示 Extrude Area along Normal 对话框,在 DIST 选项中输入 5,单击 OK 按钮;回到 Extrude Area by...对话框,选取另一个 Area,单击 OK 按钮,重复该操作 过程,即可完成准三维边坡模型的构筑,如图 5-13 所示。

xtrude Area by	
• Pick C Unpick	
Single C Box	
Polygon C Circle Loop	
ount = 0	
aximum = 1	
inimum = 1	
irea No. =	
• List of Items	A Extrude Area along Normal
Min, Max, Inc	[VOFFST] Extrude Area along Normal
	NAREA Area to be extruded 2
	DIST Length of extrusion 5
OK Apply	kinc Reypoint increment
Reset Cancel	
ick All Help	OK Appry Cancel Relp
a)	(b)
5-12 拉伸一维图形	

(2) 分网。

建立几何模型后,即可进行网格划分。首先须定义材料类型、实常数以及单元类型。

路径 1: Main Menu> Proprocessor> Element Type> Add/Edit/Delete

执行路径 1,打开 Element Types 对话框(如图 5-14),单击 Add,打开单元类型库对话框,选取 Solid45 单元,如图 5-15 所示,单击 OK 按钮后,最后单击 Element Types 对话框中的 Close 按钮,完成单元类型的定义。

A Element Types
Defined Element Types:
NONE DEFINED
Add ptions Delete
Help

图 5-14 Element Types 对话框

∧Library of Element Types	
Only structural element types are shown	
Library of Element Types	Structural Mass Link Beam Pipe Solid Shell Solid-Shell Constraint Hyperelastic
Element type reference number	1
OK Apply	Cancel Help

图 5-15 Solid45 单元选取对话框

路径 2: Main Menu> Proprocessor> Real Constants> Add/Edit/Delete

执行路径 2, 打开 Real Constants 对话框(如图 5-16(a)所示),单击 Add 按钮,打开单元类型库对话框,选取 Type 1 Solid45 选项,然后单击 OK 按钮,弹出如图 5-16(b)所示对话框,由于实体 Solid45 单元没有实常数项,所以单击 Close 按钮。

路径 3: Main Menu> Material Props> Material Models

执行路径 3, 打开定义材料本构模型对话框, 如图 5-17 所示, 依次执行 Material Models

5 Chaptei

Available> Structural> Linear> Elastic> Isotropic 选项,弹出线弹性材料模型对话框(图 5-18 (a)), 按照提示输入弹性模量和泊松比,再单击 Density 选项,打开密度输入对话框(图 5-18 (b)),输 入密度后单击 OK 按钮。

图 5-17 定义材料本构模型对话框

在 Define Material Model Behavior 对话框的 Material 下拉菜单中选取 New model 选项,打开定 义材料编号对话框,接受默认编号"2",单击 OK 按钮。继续执行 Material Models Available> Structural> Linear> Elastic> Isotropic 选项,按照提示输入弹性模量、泊松比和密度,这里采用的是 基岩参数,弹性模量为 15GPa, 泊松比为 0.3,密度为 2550kg/m³,最后关闭定义材料本构模型对 话框。

5 Chapter

	FLAC3D 建模方法 第 5 章
ALinear Isotropic Properties for Mater 🔀	▲ Density for Material Number 1
Linear Isotropic Material Properties for Material Number 1	Density for Material Number 1
T1 Temperatures D EX 22+010 PKXY D. 1	Temperatures 0 DENS 2500
Add Temperature Graph	Add Temperature Delete Temperature Graph
OK Cancel Help	OK Cancel Help

(a)

图 5-18 本构模型参数输入对话框

由于分析过程通过 FLAC3D 实现,所以 ANSYS 分网时采用的本构模型和参数 并无实际意义,仅仅是用于区分不同材料而已,读者输入经验参数即可。

定义材料类型、实常数以及单元类型后,通过选择不同材料类别并设置分网的控制尺寸,对不 同模型区域进行网格的剖分,如下所述:

路径 4: Main Menu>Meshing> Size Cntls>Manual Size>Lines>Picked Lines

执行路径 4,弹出以线来控制单元尺寸选取对话框,选取要分割的线,然后单击 Apply 按钮, 打开单元尺寸对话框,如图 5-19 所示。在单元分割等分文本框中输入相应的等分数,然后再单击 OK 按钮,直到所有的线都被分割完为止,最后单击 OK 按钮,如图 5-20 所示。

A Element Sizes on Picked Lines	
[LESIZE] Element sizes on picked lines	
SIZE Element edge length	
NDIV No. of element divisions	2
QMDIV is used only if SIZE is blank or zero)	
KYNDIV SIZE, NDIV can be changed	🔽 Yes
SPACE Spacing ratio	
ANGSIZ Division arc (degrees)	
(use ANGSIZ only if number of divisions (NDIV) and	
element edge length (SIZE) are blank or zero)	
Clear attached areas and volumes	No No
OK Apply Ca	Ncel Help

图 5-19 单元尺寸对话框

路径 5: Main Menu> Meshing> Mesh Attributes> Default Attribs

执行路径 5, 弹出要划分的单元属性设置对话框, 如图 5-21 所示, 用鼠标在单元类型、材料 和实常数中选取边坡模型单元(材料编号为1),然后单击 OK 按钮。依次执行 Main Menu> Meshing> Mesh> Volumes> Map 选项,弹出划分单元选取对话框,用鼠标在图形区域里选择边坡区域,然后

5 Chaptei

单击 OK 按钮。重复执行路径 5, 在单元类型、材料和实常数中选取基岩模型单元(材料编号为 2), 单击 OK 按钮。生成模型如图 5-22 所示。

图 5-20 线分控制单元大小图

▲ Leshing Attributes	\times
Default Attributes for Meshing	
[TYPE] Element type number	1 SOLID45 💌
[MAT] Material number	1
[REAL] Real constant set number	None defined 💌
[ESYS] Element coordinate sys	0 -
[SECNUM] Section number	None defined 🔽
OK Cancel	Help

图 5-21 边坡单元属性设置对话框

(3) 网格点、单元以及组信息的输出。

生成网格模型后,读者便可采用 Nlist、Elist 命令将模型的单元和网格点信息输出,也可直接 采用 ANSYS 内嵌的 APDL 语言编写程序执行此过程。这里介绍河海大学郑文棠博士编写的命令流, 内容如下:

126

图 5-22 ANSYS 模型网格图

/prep7 *MSG,ui ANSYS to FLAC3D! NUMMRG,NODE, , , ,LOW NUMMRG, ELEM, , , , LOW nsel,all esel,all node_1=1 node_2=2 node_3=3 node_4=4 node_5=5 node_6=6 node_7=7 node_8=8 ACLEAR, all ! 删除面单元, 只保留体单元 !压缩节点号和单元号以及材料号 NUMCMP,ALL *get,NodeNum,node,,NUM,MAX *get,EleNum,elem,,NUM,MAX *dim,NodeData,array,NodeNum,3 *dim,EleData,array,EleNum,8

5 Chapter

```
FLAC3D 在岩土工程中的应用
```

*Dim,EleMat,array,EleNum,1,1

*do,i,1,NodeNum *get,NodeData(i,1),node,i,LOC,x *get,NodeData(i,2),node,i,LOC,y *get,NodeData(i,3),node,i,LOC,z *enddo

*vget,EleData(1,node_1),elem,1,NODE,node_1
*vget,EleData(1,node_2),elem,1,NODE,node_2
*vget,EleData(1,node_3),elem,1,NODE,node_3
*vget,EleData(1,node_4),elem,1,NODE,node_5
*vget,EleData(1,node_6),elem,1,NODE,node_6
*vget,EleData(1,node_7),elem,1,NODE,node_7
*vget,EleData(1,node_8),elem,1,NODE,node_8
*vget,EleMat(1),ELEM,1,ATTR,MAT

```
!写节点数据到文件,默认保存在G盘
*CFOPEN,01_node,dat,g:\
*vwrite,
(';The node information file from ANSYS')
*vwrite, nodenum
%I
*vwrite,sequ,NodeData(1,1),NodeData(1,2),NodeData(1,3)
%I,%G,%G,%G
*cfclos
```

!写单元数据到文件

*vwrite,

```
(';The element information file from ANSYS')
```

*vwrite, elenum

%I *vwrite,sequ,EleData(1,1),EleData(1,2),EleData(1,3),EleData(1,4),EleData(1,5),EleData(1,6),EleData(1,7),Ele a(1,8),EleMat(1)

Data(1,8), EleMat(1)

```
%I, %I, %I, %I, %I, %I, %I, %I, %I, %I
*cfclos
*MSG,ui
File is created in G:/
```

执行上述命令流后,程序会在 G 盘根目录下生成记录模型网格点信息和单元信息的文本文件 01_node.dat 和 02_ele.dat。

2. ANSYS 与 FLAC3D 的接入

根据 5.2.1 节中 FLAC3D 文件的格式,将文本文件 01_node.dat 和 02_ele.dat 进行改造,读者可以自行编程实现,思路如下:

- ▶ 读取 01_node.dat 文件,网格点序号、网格点坐标不变,增加网格点标识(Gridpoint);
- 读取 02_ele.dat 文件,单元序号不变,修改单元的拓扑关系,按照 5.1 节中 Brick 单元各 网格点的指定排序关系对 02_ele.dat 进行列操作;
- 增加单元标识(Zone)以及单元类型,判断单元网格点的序号,若无重复号,类型为B8; 若有两对网格点重号,类型为W6;若有四对网格点重号,类型为T4;按照5.1节指定的 排布顺序修改W6和T4单元的拓扑关系;
- 读取各单元的材料编号,并记录相同材料的单元序号;
- 新建文件,将上述信息写入。

很多有限元软件计算时将 W6 和 T4 单元视为 8 网格点单元,故在一个单元中网格点可以具有相同的序号,而 FLAC3D 中则不支持,如某个单元含有相应编号的网格点,读入时系统将提示错误。

这里仍采用河海大学郑文棠博士编写的程序 ANSYS-FLAC.exe 实现,将 01_node.dat 和 02_ele.dat 与 ANSYS-FLAC.exe 置于同目录,执行 ANSYS-FLAC.exe 程序,即可生成可读入的 FLAC3D 模型文件。格式如下:

* GR	RIDPOI	NTS	5							
G	1		1330.1736	5	-527.574	6	5.000	00		
G	2		1328.4642	2	-529.207	'3	5.000	00		
G	465		1355.9014	1	-534.863	19	2.500	00		
* Z(ONES									
Z B8	5	1	52	90	76	219	75	243	257	242
Z B8	5	2	219	257	243	43	242	19	5	20
	•									
Z B8	3 2	254	424	205	465	427	117	262	204	203
* (GROUI	PS								
ZGR	OUP	1								
		1								
		2								
	•••									
	1	34								
ZGR	OUP	2								
	1	35								
	1	36								
	•••									
	2	254								

打开 FLAC3D,执行路径 File>Import Grid,选取模型文件,显示如图 5-23 所示。

至此,AutoCAD-ANSYS-FLAC3D 的基本建模过程已经介绍完毕,上述方法比较适宜于没 有较多三维建模经验的读者。此外,对于较复杂的真三维模型,没有较多 ANSYS 使用经验的读者 可以直接利用 AutoCAD 的真三维建模功能,将模型以 sat 文件的形式输出,利用 ANSYS 分网后直 接与 FLAC3D 接入(见图 5-24)。

129

5 Chaptei

图 5-23 FLAC3D 模型网格图

5.2.3 ABAQUS 网格模型的导入

陈育民等(2009 年)编制了有限元软件 ABAQUS 模型与 FLAC3D 的接入程序,该程序文件 见《FLAC/FLAC3D 基础与工程实例》所附光盘文件,具有 ABAQUS 使用经验的读者可以尝试运 行,本书不做详细介绍。

- 程序通过 VC++6.0 编译且作出以下几点约束:
 - (1) 允许 inp 文件最大的行数为 100 万行;
 - (2) 最大材料数量为 200;
 - (3) 材料名称为英文,中间不允许有空格;
 - (4) 允许六面体、四面体、金字塔型五面体、三棱柱型五面体等四种单元形式;
 - (5) 无需用户自己输入单元数量、节点数量等信息,程序会自动读取;
 - (6) 读入文件的后缀必须为 inp;
 - (7) 输出文件的后缀自动为.flac3d;
 - (8) 目前仅针对 ABAQUS 6.7 版本的 inp 文件。

程序运行的输入和输出窗口如图 5-25 所示。图 5-26 为其运行的一个实例。

(a) 程序输入窗口

图 5-25 Abaqus67ToFlac3d 转换程序的输入和输出

针对 FLAC3D 在复杂计算模型构建方面的不足,很多学者在 FLAC3D 前处理方面进行了有益

的尝试。胡斌(2002年)采用 FORTRAN 语言编写了 FLAC3D 的前处理程序,对于地表形态复杂、 岩层和地质结构较单一的地质体实现了快速、便捷的建模。丁秀美(2004年)采用基本单元模型 和多层组合模型对具有复杂地质结构、复杂施工工况的计算模型的建立进行了探索。徐文杰(2008 年)提出了基于 ADINA 软件平台的三维复杂地质体精细建模技术,开发了 ADINA 到 FLAC3D 的 前处理程序。但以上研究成果只能解决实体单元模型的构建和转换,对于岩土工程中大量涉及的土 工结构单元无法进行处理。

西班牙 INGECIBER, SA 公司在 ANSYS 软件平台的基础上二次开发出土木工程分析软件 CivilFEM。CivilFEM 完全内嵌于 ANSYS, 材料库和结构单元截面形状库完全支持中国设计规范, 具备完备的结构荷载组合计算方法, 计算结果的校核与完全支持中国设计规范《建筑抗震设计规范 (GB50011-2001)》、《混凝土结构设计规范(GB50010-2002)》和《钢结构设计规范(GB50017 -2003)》,该软件还具有针对土木行业的专业功能模块:通用结构设计、岩土工程分析、桥梁结构 分析、预应力混凝土分析等,该软件岩土工程分析模块可方便地将复杂计算模型导入 FLAC3D 进 行计算。

基于 ANSYS/CivilFEM 单元类型模板, HyperMesh 与 FLAC3D 的转换关系如图 5-27 所示, 前 处理接口程序将计算模型划分为结构单元和实体单元两类:结构单元包括 Link8 单元、Beam4 单元 和 Shell63 单元,实体单元为 Solid45 单元。Link8 单元可转换为 FLAC3D 的 Cable 单元,Beam4 单元可转换为 FLAC3D 的 Beam 单元和 Pile 单元,Shell63 单元可转换为 FLAC3D 的 Shell 单元、 Geogrid 单元和 Liner 单元,Solid45 实体单元可转换为 FLAC3D 的 Zone 实体区段。

图 5-27 HyperMesh 与 FLAC3D 转换关系

5.3.1 实体单元的建立

任何通用 CAE 前处理软件,其内部单元生成均具有一定规则。对实体模型,有限元软件称 之为单元与节点,FLAC3D 称之为区段与网格点,因此软件之间的接口处理程序需将节点与单元 分别转换成网格点与区段。而对梁、壳等结构单元,FLAC3D 也采用有限单元,因此转换关系是 一致的。

ANSYS/CivilFEM 所采用的实体单元形状与 FLAC3D 一致,但每个单元节点编号规则存在差异。这两种软件所采用的实体单元节点编号顺序如表 5-3 所示,因此单元网格节点的转换关系应进行调整。

132

FLAC3D 建模方法 第 5 章

133

1.000

表 5-3 ANSYS/CivilFEM 与 FLAC3D 实体单元数据关系

下面通过一个单位长度六面体单元来说明实体单元的转换方法。

例 5.2 六面体单元转换。

首先在 HyperMesh 中基于 ANSYS 模板生成六面体单元,如图 5-28 所示,然后通过模型输出 生成 ANSYS 可以接受的节点和单元文件。CivilFEM 中需要重新定义材料参数,如图 5-29 所示, 本例中将单元定义为弹性材料,确定体积模量和剪切模量。由于 CivilFEM 中具有材料库可直接选 用,本例选用低塑性黏土(CL),体积模量和剪切模量可自动赋值,FLAC3D中生成的实体模型如 图 5-30 所示。

/PRE	P7		Chapte	ы
!! N	NODE Data	1节点信息	-	
CSYS	S,0	!整体坐标系		
N,1, 0	0.0, 0.0, 0.0			
N,2,	1.0, 0.0, 0.0			
N,3, 0	0.0, 1.0, 0.0			
N,4,	1.0, 1.0, 0.0			
N,5, 0	0.0, 0.0, 1.0			
N,6,	1.0, 0.0, 1.0			
N,7,	1.0, 1.0, 1.0			
N,8, 0	0.0, 1.0, 1.0	!材料信息		
!!HM	INAME MAT			
!!	1 "mat1"			
MPT	EMP,1, 0.0	!单元信息		
				1

!!HMNAME ET !! 1 "ET_1" ET,1,45 **!!HMNAME PROP** !! 1 "PROP_1" R,1, 0.0 **!!HMNAME COMP** !! 1-1-1 2 "brick" TYPE, 1 \$ MAT, 1 \$ REAL, 1 ESYS, 0 EN, 2, 1, 2, 4, 3, 5, 6, 7, 8 ESYS, 0 EN, 1, 1, 2, 4, 3 CM, brick, ELEM FINISH /PREP7

~CFMP,1,LIB,SOIL,,CL ~CFFL3D,0,0,0,0

FINISH

!特性参数信息

!分组信息

!由8节点生成单元 !单元坐标

! CivilFEM 中赋材料参数 !单元输出至 FLAC3D

图 5-28 HyperMesh 六面体单元

134

FLAC3D 建模方法 第5章

neral | Structural Analysis | Specific weigh | Properties | Grain-size | Correlations | PLAC30 |

Material 1: CL

第5章

图 5-29 CivilFEM 中定义材料参数

GENERATE POINT id 1	0.000E+00	0.000E+00	0.000E+00	!生成网格点		
GENERATE POINT id 2	0.100E+01	0.000E+00	0.000E+00			
GENERATE POINT id 3	0.000E+00	0.100E+01	0.000E+00			
GENERATE POINT id 4	0.100E+01	0.100E+01	0.000E+00			
GENERATE POINT id 5	0.000E+00	0.000E+00	0.100E+01			
GENERATE POINT id 6	0.100E+01	0.000E+00	0.100E+01			
GENERATE POINT id 7	0.100E+01	0.100E+01	0.100E+01			
GENERATE POINT id 8	0.000E+00	0.100E+01	0.100E+01			
GENERATE ZONE BRIC	K p0 poin	t 1 p1 point	3 p2 point 5 &	!生成 Brick 单元		
p3 point 2 p4 point 8	p5 point 6	p6 point 4 p	7 point 7 &			
size 1 1 1 group MA	T00001					
MODEL ELASTIC range	group MAT00	0001		!本构模型		
PROPERTY BULK0.3331	!本构模型参数					
PROPERTY SHEAR 0.714E+07 range group MAT00001						
INITIAL DENSITY	0.183E+04 rai	nge group MA	T00001			

TACK 10 IN	
the first particip sponses hirdow	
FLAC3D 3.00 Settings: Model Perspective 15:01:57 Thu Apr 01 2010	
Center: Rotation: X: 5.000-01 X: 20.000 Y: 5.000-001 X: 0.000 Z: 5.000-001 Z: 30.000 Dist: 3.265e+000 Mag.: Increments: Ang.: 0.64 Moye: Increments: Ang.: Red.: 10.000	
Sketch Magfac = 0.000e+000 Linestyle	
Axes Linestyle	
*	
Itasca Consulting Group, Inc. Minneapolis, MN_USA	
Command Window - LFT09/30-D47	05
Labordenti Falo Id Labordenti Falo Id Labordent	.tenensensensen et timensensensen et 3 yp print 5 på print 2 på print & på print i y mitemen mitemen

图 5-30 FLAC3D 实体模型

5 Chapter

5.3.2 结构单元的建立

ANSYS/CivilFEM 所采用的结构单元形状与节点顺序均与 FLAC3D 一致,两种软件所采用的结构单元节点编号顺序如表 5-4 所示。需注意的是 FLAC3D 中壳类结构单元(Shell、Geogrid 和 Liner)均为三角形单元,故 ANSYS/CivilFEM 中建立的四边形单元必须分割为三角形单元。可将 具有不同材料参数的结构和实体单元转换至 FLAC3D 并形成不同的材料组,方便模型计算参数的赋值。

单元类型			
HyperMesh	FLAC3D	半九形状	
Link8 单元	Cable 单元	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Beam4 单元	Beam、Pile 单元	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Shell63 单元	Shell、Geogrid、Liner 单元	$\frac{1}{2}$	

表 5-4 ANSYS/CivilFEM 与 FLAC3D 结构单元关系

下面通过一梁壳单元来说明结构单元的转换方法。

例 5.3 梁壳结构单元转换。

首先在 HyperMesh 中基于 ANSYS 模板生成二节点梁单元和三角形壳单元,然后通过模型输出 生成 ANSYS 可以接受的节点和单元文件。本模型包括二节点 Beam4 单元和三节点 Shell63 单元, 且单元共用节点,如图 5-31 所示。CivilFEM 中重新定义两种材料,如图 5-32 所示。材料 1 定义为 壳单元(图 5-33),材料 2 定义为梁单元(图 5-34),壳单元顶点定义如图 5-35 所示,梁单元截面 定义如图 5-36 所示。壳单元和梁单元赋实常数如图 5-37 和图 5-38 所示,FLAC3D 中生成的结构 单元模型如图 5-39 所示。

5 Chapter

	FLAC3D 建模方法 第5章	
UHMNAME MAT	单元信息	
11 2 "mat2"	. 1701110	
MPTEMP 1. 0.0		
I'HMNAME ET		
11 2 "ET 2"		
ET 2.4	!Beam4 单元	
UHMNAME ET		
!! 1 "ET 1"		
ET 1 63	!生成 Shell63 单元	
UHMNAME PROP	!特性参数信息	
11 2 "PROP 2"		
$\mathbf{R} = \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R}$		
11HMNAME PROP		
$\mathbf{R} = 1 + 0 + $		
UHMNAME COMP		
II 1-1-1-37		
ΤΥΡΕ 1 \$ΜΔΤ 1 \$ REΔΙ 1		
$\mathbf{FSVS} \ 0$		
EN $A $ $1 $ $2 $ $3 $ 3	1生成 Shell 单元	
CM shall EI EM		
ESEL NONE		
UHMNAME COMP		
11 2-2-2.4 "beam"		
11 2-2-2 20		
TYPE 2 \$MAT 2 \$REAL 2		
FSYS 0		
EN 6 2 4	!牛成 Beam 单元	Q
CM beam FLEM		5 Naptei
FINISH		
/PREP7		
~CEMP1.FLSEL TSEL 4	!材料1定义为壳单元(编号4)	
~CFMP1.FLSEL SHELL ELE 4	!定义壳为DKT CST 单元	
~SHLRNE1.100.000E-03.1.0.0.000E+00.0.000E+00.0.000E	!壳单元实常数	
+00.0.000E+00.0.000E+00.0.000.45.00		
~SHLMDF.1.NAMEShell Vertex 1		
~CSECDMS.1.REC.2.0.1.0.1.0.0.0.0.0.0.0.0.0	!梁单元实常数	
~SECMDF.1.NAMEBeam		
~BMSHPRO,1,SHELL,1,1,1,1,630,Shell 1	!赋壳单元实常数	
~BMSHPRO,2,BEAM,1,1,4,1.0Beam 2	!赋梁单元实常数	
~CFFL3D,0,0,0	!单元输出至 FLAC3D	

图 5-31 HyperMesh 结构单元

Name	Reference	N	Туре	New
	C30	1	Concrete	Delete
9092	HRB335	2	Reinforcing steel	Modify
				Сору
				List
				Save
				Correlatio

图 5-32 CivilFEM 中定义材料参数

		FLAC3D 建模方法	第5章
Material 2: HBB3335	C		
General Analysis Diagram Design Diagram Reinforcing Steel Eurocode No.2 FLAC30			
Estructural elements material properties			
tool Beam			
emod 0.000E+00 Pa			
na 300.000E-03			
density 7.850E+03 k.g/m ³			
thesp 10.000E-06 3/s			
proment 0.000E+00 N.m.			
OK Apply Cancel	Holp		
图 5-34 采甲兀材科定义			
🕼 Shell Vertex 1: Shell Vertex 1			
General Reinforcement			
General properties:			
Usec 1 Name Shell Vertex 1			
DE10 Dainfar Congrata			
NEIG REINER CONCLECE			
Thickness:			
Thk 100.000E-03 m			
Material:			
1: 030			
Mat 1. CJU V			

OK Cancel Help

图 5-36 梁单元截面定义

	and the second second
V X II Y Number 1 * Name Thrill 1	Erane SHELL 62 +
Shall Venes properties	Member Picportes Number
Constant shell sector	
· ·	Mandas Properties Type
Value3 Value3	Properties
Thickness 0.1 =	
Manual 1	
1 I I I I I I I I I I I I I I I I I I I	
Value2. Value4	
EPS 0 Real Constants	

States - - -

图 5-37 赋壳单元实常数

图 5-38 赋梁单元实常数

ъ

FLAC3D 3.00	
Settings: Model Perspective 16:52:14 Thu Apr 01 2010	(4)
Center: Rotation; X: 6.290-01 X: 10.000 Y: 2.750-001 Y: 0.000 Z: 3701-001 Z: 40.000 Dist: 3.265-000 Mag: 0.8 Increments: Ang.: 22.500 Move: 1.290-001 Rot.: 10.000	
SEL Geometry Magfac = 0.000e+000	6
Itasca Consulting Group, Inc. Minneapolis, MN USA	× z 4 2
Consumed Window CTIOLEDAN HeadCL property specification. Please wait > Set plan memet of inertia for 1 headCLS. LacDOLL MEM from VMI & stepseberger > set vector (vr. (vr.), Vr.) that drines y-axis of Plancholl will gen note off sh % FlacDoll will not we Hardoll will not we Hardoll will be we hard	(+80 0,10000000000000000000000000000000000
图 5-39 FLAC3D 结构	——————————————————————————————————————

	FLAC3D 建模方法	第5章
		N 11 1
SEL NODE cid 1 0.000E+00 0.000E+00 0.000E+00	!生	成节点
SEL NODE cid 2 0.100E+01 0.000E+00 0.000E+00		
SEL NODE cid 3 0.100E+01 0.100E+01 0.000E+00		
SEL NODE cid 4 0.100E+01 0.000E+00 0.100E+01		
SEL SHELLSEL cid 4 id 4 ele DKT_CST nodes 1 2 3	!生	成壳单元
SEL SHELL PROP DENSITY 0.250E+04 RANGE id 4		
SEL SHELL PROP ISOTROPIC 0.319E+11 0.200E+00 RANGE	id 4	
SEL SHELL PROP THEXP0.100E-04 RANGE id 4		
SEL SHELL PROP THICKNESS 0.100E+00 RANGE id 4		
SEL BEAMSEL cid 6 id 6 nodes 2 4	!生	成梁单元
SEL BEAM PROP DENSITY 0.785E+04 RANGE id 6	!梁	单元参数
SEL BEAM PROP EMOD 0.000E+00 RANGE id 6		
SEL BEAM PROP NU 0.300E+00 RANGE id 6		
SEL BEAM PROP PMOMENT 0.000E+00 RANGE id 6		
SEL BEAM PROP THEXP0.100E-04 RANGE id 6		
SEL BEAM PROP XCAREA 0.100E-01 RANGE id 6		
SEL BEAM PROP XCIY 0.8334E-05 RANGE id 6		
SEL BEAM PROP XCIZ 0.833E-05 RANGE id 6		
SEL BEAM PROP XCJ 0.140E-04 RANGE id 6		
SEL BEAM PROP YDIR 0.000E+00 0.100E+01 0.000E+00 RA	NGE id 6	
SEL NODE INIT XPOS ADD 0.0		

5.3.3 后处理

FLAC3D 结构单元后处理内容包括节点响应的输出和单元响应的输出,采用 PLOT 命令可以显示云图,也可采用 PRINT 命令显示具体数值,但有时在进行计算结果后处理时需要将数据批量输出。下面分别以梁单元和壳单元为例,说明结构单元计算结果的批量输出方法。

例 5.4 梁单元弯矩输出。

假定一根长度为 10m 的梁,起点为(0,0,0),终点为(0,0,10),划分为 20 个单元,梁底全约束,梁顶自由,在梁侧施加 1N/m²均布荷载,求解并输出梁单元弯矩。

new			
sel beam id=1 begin 0 0 0 end 0 0 10 nseg=20	!建立梁单元	Ω	2
sel beam prop emod=210e9 nu=0.3 xcarea=1.0 &	!梁单元参数	napte	ы
xciy=0.0833 xciz=0.0833 xcj=0.167		4	
sel node fix x y z xr yr zr range x=(-0.1,0.1) y=(-0.1,0.1) z=(-0.1,0.1)	!底端约束		
sel beam apply zdist 1.0	!施加均布荷载		
sel set damp combined	!设置阻尼		
pl sel beam moment my axes	!显示弯矩		
solve			
FLAC3D显示的梁弯矩结果如图 5-40 所示。由于 FLAC3D 梁单	元内力显示方式采用两侧显示,		
与常规单侧显示方式不同,表达不直观。下面通过 FISH 子程序将	单元内力数据提取出来,这样就		

方便通过 ORIGIN 等软件绘制弯矩,计算结果与理论值的对比如图 5-41 所示。 ;------梁单元弯矩输出子程序(基于单元形心)----def force_outp jj=0 loop cid(1,20) !执行单元循环

sp=s_find(cid)	
if s_type(sp)=1 then	!判断单元类型是否为梁单元
jj=jj+1	
;第1节点相关数据	
$np = s_node(sp,1)$!单元第一节点
$xx1 = nd_{pos}(np,2,1)$	
$yy1 = nd_{pos(np,2,2)}$	
$zz1 = nd_{pos}(np,2,3)$	
$ffx1 = sb_force(sp,1,1)$!六个内力分量
$ffy1 = sb_force(sp,1,2)$	
$ffz1 = sb_force(sp,1,3)$	
$mmx1 = sb_mom(sp,1,1)$	
$mmy1 = sb_mom(sp,1,2)$	
$mmz1 = sb_mom(sp,1,3)$	
;第2节点相关数据	
$np = s_node(sp,2)$!单元第二节点
$xx2 = nd_{pos}(np,2,1)$	
$yy2 = nd_{pos}(np,2,2)$	
$zz2 = nd_{pos}(np,2,3)$	
$ffx2 = sb_force(sp,2,1)$!六个内力分量
$ffy2 = sb_force(sp,2,2)$	
ffz2= sb_force(sp,2,3)	
$mmx2 = sb_mom(sp,2,1)$	
$mmy2 = sb_mom(sp,2,2)$	
mmz2= sb_mom(sp,2,3)	
;形心相关数据	!单元形心
xx=(xx1+xx2)/2.0	
yy=(yy1+yy2)/2.0	
zz=(zz1+zz2)/2.0	
ffx = (ffx1 + ffx2)/2.0	!六个内力分量进行平均
ffy=(ffy1+ffy2)/2.0	
ffz = (ffz1 + ffz2)/2.0	
mmx=(mmx1+mmx2)/2.0	
mmy=(mmy1+mmy2)/2.0	
mmz=(mmz1+mmz2)/2.0	
;	!将输出内力存于表中
xtable(1,jj)=zz	
ytable(1,jj)=mmy	
endif	
endloop	
end	
force_outp	!执行子程序
set logfile beam_moment.txt	!设置输出文本
set log on	
set pagelength 10000	
pri table 1	!显示数据
quit	

5 Chapter

			FLAC3D 建模方氵	法 第5章
P TACID 3.06.261 Bie Dolle, Ontro, Bie Briddy, Hits			ରୀହାରେ	
View Baie/0	18		ାଳ ଭ	
FLAC3D 3.00 Step 32648 Model Perspective 14:59:29 Tue Apr 06 2010		÷		
Center: Rotation: X: 0.000e+000 X: 0.000 Y: 0.000e+000 Y: 0.000 Z: 5.000e+000 Z: 0.000 Dist: 2.765+001 Mag.: 1 Increments: Ang.: 22.500 Move: 1.100e+000 Rot.: 10.000				
beam Moment My Magfac = 0.000e+000				
positive wrt SEL system negative wrt SEL system	*			
Maximum = 5.000e+001 Axes Linestyle				
		z		
Itasca Consulting Group, Inc. Minneapolis, MN USA		××		
Command Window - beam, surport dat			ା ସମସ୍ତ ହ	
Flac2DSysE set damp combined Flac2D> Flac2D> Flac2D>pl sel beam moment my Flac2Dsolve Starting at: 14:52:15 for mpr 06 2010 Clobal Ratio Limit of 1.000-005 Step Nech. Ratio				
32647 9.889e-086 Ending at: 14:52:34 Tue Apr 86 2010 Flac3D>pl se ba wh				

图 5-40 梁单元弯矩计算结果

图 5-41 梁单元弯矩计算值与理论值对比

例 5.5 壳单元弯矩输出。

假定单位宽度壳单元,长度为 10m,厚度为 0.1m,划分为 20 个三角形壳单元,底部节全约束, 壳顶自由,在壳外法向施加 1N/m²均布荷载,求解并输出壳单元弯矩。

new	
gen zone brick size 1 1 10	!先生成实体
sel shell id=1 elemtype=dkt_cst range x=(-0.1,0.1)	!在实体面上生成壳单元
dele	!删除实体
sel shell prop iso=(210e9,0.3) thick=0.1	!壳单元参数
sel node fix x y z xr yr zr range x=(-0.1,0.1) z=(-0.1,0.1)	!底端全约束
sel shell apply pres -1.0	!施加均布荷载
sel set damp combined	!设置阻尼
solve	

5 Chapter

1000

	sel rec surf surfx 1 0 1	!应力恢复,	!显示弯矩	
	pl sel rec sres mx surfsys off axes			
	FLAC3D 显示的壳弯矩结果如图 5-42 所示。FLAC3D 壳单元内力	1显示方式采	采用云图显示,	下
面通	过 FISH 子程序将单元内力提取出来,计算结果与理论值的对比如	四图 5-43 所	示。	
	;壳单元弯矩输出子程序(基于单元形心)			
	sel rec surf surfx 1 0 1			
	pl sel rec sres mx			
	def sres_outp	!内力输出子	4程序	
	jj=0			
	loop cid(1,20)			
	sp=s_find(cid)		6 mil	
	if s_type(sp)=4 then	!判断里兀龚	至型	
	jj=jj+1	「光二式」)は	<i>i</i> +	
	$xx = s_{pos}(sp, 1)$! 卑兀形心坐	全体	
	$yy = s_{pos}(sp,2)$			
	$zz = s_pos(sp,3)$	山谷一市市力の	旦	
	$smxx=sst_sres(sp,0,1)$! 甲儿内力为	「里	
	smyy=sst_sres(sp,0,2)			
	smxy=sst_sres(sp,0,5)			
	$snxx=sst_sres(sp,0,4)$			
	$s_{Hyy} = s_{t} $			
	$s_{\text{IIX}} = s_{\text{SL}} (s_{\text{SL}} (s_{SL$			
	$sq_{AA}-ss_{sb}(sp,0,7)$			
	$s_{ij} = s_{ij} = s_{ij} = s_{ij}$	「将输出内ナ	1 左于表中	
	$v_{ij} = 22$	•••••••••••••••••••••••••••••••••••••••		
	endif			
	endloop			
	end			
	sres_outp	!执行子程序	Ż	
	set logfile mxx.txt	!设置输出文	(本	
	set log on			
	set pagelength 10000	!显示数据		
	pri table 9			
	quit			

以上通过两个简单结构模型说明了 FLAC3D 结构单元内力的输出方式, FLAC3D 的 6 种结构 单元的内力输出均可以按照此思路进行。6 种结构单元中,梁单元、索单元和桩单元均为二节点直 线形单元,梁单元和桩单元每个节点均具有 6 个自由度,而索单元每个节点仅具有沿轴线方向的平 动自由度,因此索单元的内力仅能输出轴力,而梁单元和桩单元不仅可以输出轴力,还可以输出弯 矩和扭矩。

5 Chapter

144

-

		FLAC3D 建模方法	第5章
P (1.3.C30 3.00-26)			
Ele Edit Settings Botitems Window			
View Base/0		0.0 0	
FLAC3D 3.00 Step 94938 Model Perspective 15:49:11 Tue Apr 06 2010			
Center: Rotation: X: 3.5180-005 X: 0.000 Y: 5.0000-001 Y: 0.000 Z: 5.0000+000 Z: 30.000 Dist: 2.742+001 Mag.: 1 Increments: Ang.: 22.500 Move: 1.1200+000 Rol.: 10.000			
SEL sres-My Magfac = 0.000e+000 -1.9038-001 to 0.0000e+000 0.0000e+000 to 1.0000e+001 1.0000e+001 to 2.0000e+001 2.0000e+001 to 3.0000e+001 4.0000e+001 to 5.0000e+001 5.0000e+001 to 5.042e+001 Interval = 1.0e+001 SurfX = (1.00, 0.00, 0.00)			
Axes Linestyle			
Itasca Consulting Group, Inc. Minneapolis, MN_USA			
Consued Window - shell.det		କାଳ ନ	
Flacibly save temp, sav Flacibly Save temp, sav Flacibly Save temp save x = 1 = 0 Flacibly Save rec surf save x = 1 = 0 flacibly Save rec surf save x = 1 = 0 flacibly Save x = 0 *** three save x = 0 Flacibly Save rec saves mc Flacibly Save rec save rec save mc Flacibly Save rec save rec save rec save rec save	wal at mode 1		

图 5-42 壳单元弯矩计算结果

图 5-43 梁单元弯矩计算值与理论值对比

5.4 本章小结

本章介绍了 FLAC3D 的网格建模方法,包括利用软件自身的网格生成器进行简单建模的方法、 利用第三方软件进行模型的接入方法以及复杂模型的建立方法。学习中,读者应掌握使用网格生成 器进行简单建模的方法,并在掌握 FLAC3D 网格数据格式的基础上了解常用第三方软件的模型导 入操作。对于复杂的工程问题,有时需要进行合理的简化,而不是一味地追求网格模型要与实际工 程"如何相似",这种"相似"的要求往往使得网格建模时消耗巨大的精力,分析人员应该把更多 的精力投入到如何分析、如何解释计算结果上来。

5 Chapter

-